The dynamics of OB associations

Nick Wright

Ernest Rutherford Fellow, Keele University

With thanks to... Herve Bouy, Eric Mamajek, Richard Parker, Janet Drew, Jeremy Drake, Rob Jeffries, Simon Goodwin, Emmanuel Bertin, David Barrado, Jean-Charles Cuillandre & Luis Manuel Sarro Low-density, co-moving groups of young stars (Ambartsumian 1947)

- Low-density, co-moving groups of young stars (Ambartsumian 1947)
- Gravitationally unbound and therefore expanding (Blaauw 1964)

- Low-density, co-moving groups of young stars (Ambartsumian 1947)
- Gravitationally unbound and therefore expanding (Blaauw 1964)
- Thought to be the expanded remnants of star clusters disrupted by residual gas expulsion
 - (e.g., Hills 1980, Lada & Lada 2003, Baumgardt & Kroupa 2007)

Testing the origins of OB associations

Cygnus OB2 Pre-Gaia ground-based astrometry

Scorpius-Centaurus Gaia DR1 astrometry

Cygnus OB2 association

- Total mass ~ (2-4) × 10⁴ M_☉ (Wright+ 2010)
- ~ 65 O stars, up to 100 M_☉
- Age ~ 5 Myr (Drew+ 2008, Wright+ 2010)

Using X-ray selected sample of members (Wright & Drake 2009, Wright et al. 2010)

WISE 12um image of Cygnus X showing distribution of massive stars (Wright+ 2015)

Substructure in Cygnus OB2

- Cygnus OB2
- Sub-virial cluster
- + Virial cluster
- ◊ Super-virial cluster
- \times Low density cluster

Proper Motions from Wide Field Imaging

15 year baseline => PMs with sub-mas/yr precision

Proper **Motions**

- 748 members of Cyg OB2 shown
- O stars in red •

Proper Motions

- Radial component of PMs divided between:
 - Expansion (red), 50% of KE
 - Contraction (blue), 50% of KE
- No cohesive expansion motion -> not an expanded star cluster
- Cluster disruption mechanisms (e.g., residual gas expulsion) not been at work

Right Ascension

Proper **Motions**

- Significant kinematic substructure
- Moving groups appear to be bound and possibly long lived
- Not • dynamically mixed

Scorpius-Centaurus OB association

- Nearest OB association to the Sun (d ~ 100-150 pc)
- Age ~ 10-20 Myrs (Pecaut & Mamajek 2016)
- Mass ~ 4000 M_{\odot} (Mamajek+ 2002, Preibisch & Mamajek 2008)

Scorpius-Centaurus OB association

- Approx. ~500 OBA Hipparcos members identified by de Zeeuw+ (1999)
- Using revised Hipparcos members list of 433 stars from Rizzuto+ (2011)
- Majority have vastly improved proper motions in Gaia DR1

Scorpius-Centaurus OB association

- 258/433 (60%) stars have Gaia DR1 astrometry (Gaia Collaboration+ 2016a,b)
- RVs available for 273/433
 (63%) stars (Gontcharov 2006, Kharchenko+ 2007, Chen+ 2011, Dahm+ 2012)

Radial streaming of nearby groups leads to *virtual expansion*, so not simple to assess expansion.

Other methods:

 Blaauw's (1964) linear expansion model

Radial streaming of nearby groups leads to *virtual expansion*, so not simple to assess expansion.

Other methods:

- Blaauw's (1964) linear expansion model
- 3D linear expansion tests

240° 228°

216°

204°

RA (J2000)

Radial streaming of nearby groups leads to *virtual expansion*, so not simple to assess expansion.

Other methods:

- Blaauw's (1964) linear expansion model
- 3D linear expansion tests
- Corrected proper motion vector maps

192°

Wright & Mamajek 2018

Conclusions

- OB associations long thought to be the expanded remnants of star clusters.
- We find that while OB associations are expanding, they are not expanding from compact initial conditions, but from extended and substructured distributions. This implies:
 - Massive stars in Cyg OB2 did not form in dense clusters
 - Residual gas expulsion is not responsible for dispersing young clusters
 - Planetary / binary systems in the associations **not born in dense clusters**
 - Associations not comparable to individual star clusters

Thank you for listening

Simulating Cluster Evolution

Parker, Wright et al. 2014 Parker & Wright 2016

Simulating Cluster Evolution

• Example: Evolution of the Q parameter (Cartwright & Whitworth 2004) to trace cluster substructure

Parker, Wright et al. 2014

Simulating Cluster Evolution

- Example: Evolution of Σ_{LDR} (local surface density ratio) to trace local mass segregation

Parker, Wright et al. 2014, see also Allison+ 2009 and Parker+ 2016

Cygnus OB2 Kinematic Survey

- 3D kinematics: radial velocities and proper motions
- ~4000 X-ray and spectroscopic targets
- RVs from 12-night MMT/Hectospec survey
- PMs from multi-epoch, long-baseline archival images

Wright et al. in prep

Kinematic Survey: Proper Motions

Wright+ 2016

Kinematic Survey: Proper Motions

Wright+ 2016

Radial streaming of nearby groups leads to *virtual expansion*, so not simple to assess expansion.

Other methods:

- Blaauw's (1964) linear expansion model
- 3D linear expansion tests
- Tracing back stellar motions

