The Apache Point Observatory Galactic Evolution Experiment

Ricardo Schiavon

CS20, Boston, August 1st, 2018

Overview paper: Majewski, Schiavon et al. (2017)

THE ASTRONOMICAL JOURNAL, 154:94 (46pp), 2017 September © 2017. The American Astronomical Society. All rights reserved. https://doi.org/10.3847/1538-3881/aa784d

The Apache Point Observatory Galactic Evolution Experiment (APOGEE)

Steven R. Majewski¹, Ricardo P. Schiavon^{2,3}, Peter M. Frinchaboy⁴, Carlos Allende Prieto^{5,6}, Robert Barkhouser⁷, Dmitry Bizyaev^{8,9}, Basil Blank¹⁰, Sophia Brunner¹, Adam Burton¹, Ricardo Carrera^{5,6}, S. Drew Chojnowski^{1,11}, Kátia Cunha^{12,13},

APOGEE at a Glance

- Dual hemisphere spectroscopic survey of MW stellar populations
- Bright time SDSS-III/IV survey, 2011.Q2 to 2020.Q2
- Two 300 fiber, $R \approx 22,500$, cryogenic spectrographs, large FOV
- *H*-band: $1510 1690 \text{ nm} (A_H/A_V \sim 1/6)$
- Typical S/N = 100/pixel @ H=12.2 for 3-hr integration
- RV uncertainty spec < 500 m/s in 3 hr Actual < 100 m/s in 1hr
- Precision abundances for ≈ 20 chemical elements (including C, N, O, Fe, other α , odd-Z, a few neutron-capture)
- 5 x 10⁵, predominantly giant stars, probing all Galactic populations, and those of their Local Group counterparts

2.5 m SDSS telescope at2.5 m du Pont telescope at LasApache Point ObservatoryCampanas Observatory

APOGEE at a Glance

- Dual hemisphere spectroscopic survey of MW stellar populations
- Bright time SDSS-III/IV survey, 2011.Q2 to 2020.Q2
- Two 300 fiber, $R \approx 22,500$, cryogenic spectrographs, large FOV
- *H*-band: $1510 1690 \text{ nm} (A_H/A_V \sim 1/6)$
- Typical S/N = 100/pixel @ H=12.2 for 3-hr integration
- RV uncertainty spec < 500 m/s in 3 hr Actual < 100 m/s in 1hr
- Precision abundances for ≈ 20 chemical elements (including C, N, O, Fe, other α , odd-Z, a few neutron-capture)
- 5 x 10⁵, predominantly giant stars, probing all Galactic populations, and those of their Local Group counterparts

Why APOGEE makes a difference

High resolution

*

Near Infrared

*

4-5x10⁵ giant stars

Optical Sky

@ 2009 Axel Mellinger

Near-Infrared Sky

The Two Micron All Sky Survey

Infrared Processing and Analysis Center/Caltech & Univ. of Massachusetts

APOGEE DR12 coverage

APOGEE 2 Footprint

Target Selection

- Main sample is selected from 2MASS (MIR from Spitzer and WISE for dereddening)
- (J-K)₀ ≥ 0.5, 7 < H < 13.8 => giants (RGB, AGB, RC) are 80% of the sample
- Open and globular clusters targeted for science and calibration purposes
- Ancillary science programs cover a variety of science targets (young Galactic clusters, M dwarfs, M31 GCs in integrated light)
- For details, see Zasowski et al. (2013,

APOGEE Scientific Footprint

- Galactic Archaeology
- Local Group galaxies
- Stars
- Stellar Clusters
- Interstellar Medium
- Sub-stellar Companions
- Spectral Analysis

APOGEE Scientific Footprint

Disk

Bulge

Halo

- Galactic Archaeology
- Local Group galaxies
- Stars
- Stellar Clusters
- Interstellar Medium
- Sub-stellar Companions
- Spectral Analysis

Galactic Archaeology

The Questions:

- What is the current "structure" of the Galaxy?
- What was the history leading up to it?
- What does that teach us about galaxy formation

Galactic Archaeology

The Questions:

- What is the current "structure" of the Galaxy?
- What was the history leading up to it?
- What does that teach us about galaxy formation

Is the Galaxy a typical galaxy?

The Nearby Stellar Disk

Bensby et al. 2014

- Precision abundances for 714 F-G dwarfs
- R = 40,000-110,000
- Solar neighborhood

- A bimodal distribution in $[\alpha/Fe]$ (at constant [Fe/H])
- High α stars older, higher z_{MAX} , shorter $R_{MEAN} =>$ Inner (thick) disk
- Low α stars younger, lower z_{MAX} , longer $R_{MEAN} =>$ reach Outer disk

The Nearby Stellar Disk

Bensby et al. 2014

- Precision abundances for 714 F-G dwarfs
- R = 40,000-110,000
- Solar neighborhood

• A b

aon in [α/Fe] (at constant [Fe/H])

High α older, higher z_{MAX} , shorter $R_{MEAN} =>$ Inner (thick) disk

• Low α stars younger, lower z_{MAX} , longer $R_{MEAN} =>$ reach Outer disk

"Reverse Engineering" Disk Formation

Andrews et al. 2017

- Devise SFH and chemical enrichment history to produce observations
- Two-infall model (Chiappini et al. 2001), radial migrations (e.g., Schönrich & Binney 2009, Loebman et al. 2011)
- Match data for solar neighborhood with varying degree of success

The Disk According to APOGEE

Hayden et al. 2015

- Study [Fe/H] and $[\alpha/Fe]$ for ~70,000 stars along RGB
- Data from DR12. Note bimodal [α /Fe].
- $3 < R_{GC} < 15 \text{ kpc}$, |z| < 2 kpc
- See also Hasselquist et al. (2018)

APOGEE vs EAGLE

HOME

Mackereth, Crain, Schiavon

- Understanding bimodality in light of state-of-the-art cosmological numerical simulations
- Some MW-like galaxies show bimodality in the simulations

EAGLE: Evolution and Assembly of GaLaxies and their Environments The evolution of intergalactic gas. Colour encodes temperature

Visualisation by Jim Geach & Rob Crain

Milky Way analogue at z=0

Visualisation by Adrien Thob

The EAGLE project

Schaye+ 2015, Crain+2015

Cosmological simulations of the galaxy population.

Unknown feedback efficiencies calibrated to reproduce observables.

Largest run is a cubic volume of *L*=100 cMpc

~200 ~ L^* galaxies, each with 10,000 star particles.

Diverse formation histories & environments

Abundances of 9 metal species tracked, from:

- AGB stars
- Type Ia SNe
- Type II SNe

Origin of high-/low-α according to EAGLE cosmological simulations

Mackereth, Crain, Schiavon, et al. (2018)

- High- and low- α populations evolve in chemical isolation
- No need to concoct schemes to explain chemical evolution

Accretion History

- Only 6/133 MW-like galaxies in EAGLE show bimodal [α/Fe] distributions
- The phenomenon seems to be associated with intense accretion activity at 1<z<2
- The Milky Way may be a rare MW-like galaxy

Mackereth, Crain, Schiavon et al. (2018)

C/N and Mass of RGB stars

- High-α/thick disk and low-α/ thin disk stars have markedly different [C/N] ratios
- This is a by-product of a combination of stellar evolution (mixing), chemical evolution (weakly) and <u>stellar mass</u>
- The mass of an RGB star is directly related to its age!

RGB masses from
asteroseismologyScaling Relations
+ SpectroscopyΔν2
Δν2
= Mass and Age

 $\Delta v^2 \sim M/R^3$ $v_{max} \sim M/R^2 T^{-1/2}$ => Can Solve For M and R

$$\begin{array}{ll} \frac{M}{\mathrm{M}_{\odot}} &\simeq & \left(\frac{\nu_{\mathrm{max}}}{\nu_{\mathrm{max},\odot}}\right)^{3} \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-4} \left(\frac{T_{\mathrm{eff}}}{\mathrm{T}_{\mathrm{eff},\odot}}\right)^{3/2} \\ \\ \frac{R}{\mathrm{R}_{\odot}} &\simeq & \left(\frac{\nu_{\mathrm{max}}}{\nu_{\mathrm{max},\odot}}\right) \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-2} \left(\frac{T_{\mathrm{eff}}}{\mathrm{T}_{\mathrm{eff},\odot}}\right)^{1/2}. \end{array}$$

"Scaling Relations"

16 Cyg A Metcalfe+ 2012

See Pinsonneault et al. (2018), Epstein et al. (2014)

Ages of field stars Martig et al. (2016)

- Use APOKASC sample to fit relation between Mass and [C/N] for fixed stellar parameters
- Invert relation to estimate masses (thus ages) for 52,000 stars
- High- α stars ~8-11 Gyr old. Interesting pattern in thin disk.
- Spatial distribution interesting, not corrected for selection function
- See also Ness et al. (2016)

Low [a/Fe], youngest populations

Clear broken exponential

Mackereth et al. (2017)

Profiles broaden with age

Timescale of radial migration / disk heating?

Evolution of disk scale-height, hz

Scale-height of both high- and low-& disks in solar annulus evolved steadily with time

Fundamental constraint on models for the formation of the thick disk

The Bulge

Schultheis et al. 2017, García-Pérez et al. 2018

M. Schultheis et al.: Baade's window and APOGEE 0.5 0.5 [0/Fe] o [Mg/Fe] 0 APOGE al -0.55 (Fe⁻⁰, 0.5 0.52 0 0 0.5 0.5 [Si/Fe] [Ca/Fe] Ω 0 APOGEE **Vboce** tich el al -0.5-0.5 0.5 0.5 -1.5 -2[Fe/H] -1.5__0.5 [Fe/H] 0 0 -1

 Mapping spatial structure and detailed chemical composition of bulge stellar populations

Dissolved Globular Clusters

Schiavon et al. 2017

- Stars discovered in the Inner Galaxy with GC abundance patterns (C,N,Mg,Al)
- GC destruction deposited 25% of halo stellar mass at $R_{GC} < 2 \text{ kpc}$ (10⁸ M_{Sun})
- Corresponds to 6-8 times the mass of the entire existing Galactic GC system
- See also Martell et al. (2017), Fernandez-Trincado et al. (2017)

GCs and DM halos

- Total mass in GC systems scales with the total mass of the system
- Only stellar population found to behave that way
- Suggestion that it formed early, before feedback processes became important

GCs and DM halos

- $\eta = M_{GC}/M_{TOT}$
- $\eta = (4 \pm 1) \times 10^{-5}$
- $\eta_{MW} = 9 \times 10^{-6} 5 \times 10^{-5}$

Accreted vs "In situ" Halo

Nissen & Schuster (2010)

- Precision abundances for 94 F-G dwarfs
- R = 40,000-54,000
- Distance < 335 pc

- High α stars mostly on prograde orbits => Puffed up disk/bulge
- Low α stars mostly on retrograde orbits => Accreted

Abundance Patterns Hayes et al. (2018)

Abundance pattern of low α stars indeed similar to that of dwarf galaxies

See also Fernandez-Alvar et al. (2018)

Gaia-Enceladus

Helmi et al. (2018), Kopelman et al. (2018)

- Gaia DR2 reveals a large population of retrograde stars within 2.5 kpc of Sun
- Low-α abundances (APOGEE)
- Single accretion event

- Distribution on the sky of potential G-E members
- Progenitor system mass estimated at 6 x 10⁸ M_{Sun}

See Also Belokurov et al. (2018), Deason et al. (2018)

The APOGEE view

Mackereth et al. (2018b)

- **Discovery of an accreted population with very high eccentricity (***e***)** •
- Makes up for 2/3 of all APOGEE-Gaia sample 0
- Presence of a "knee" in Mg-Fe plane suggests massive system (MC-like) •
- Low *e* population shows no "knee" => mix of stellar populations

The EAGLE view

Mackereth et al. (2018b)

- The EAGLE simulations show that only systems accreted at z < 1.5 have such high eccentricity distributions
- Due to cosmology, such systems tend to be more massive (up to 10⁹ M_{Sun})
- Such accretion events happen for only 3/22 of MW-like galaxies. They are rare.

M Dwarfs Souto et al. (2018, 2017)

- Contain most of the stellar mass
- Least studied among cool stars
- Important in search for extra-solar Earths
- TESS and Plato will discover lots of those
- APOGEE has amassed spectra for an astounding 12,000 M dwarfs.

M Dwarfs Souto et al. (2018, 2017)

- Contain most of the stellar mass
- Least studied among cool stars
- Important in search for extra-solar Earths
- TESS and Plato will discover lots of those
- APOGEE has amassed spectra for an astounding 12,000 M dwarfs.

Spectrum synthesis of Ross 128 — Souto et al. (2018) Teff - 3200 K log g = 5 near solar metallicity Abundances of C, O, Mg, Al, K, Ca, Ti, and Fe

ASPCAP

Example: spectral fits around CO lines

For details, see Holtzman et al. (2015), García Pérez et al. (2017), Majewski et al. (2017)

The Evolution of APOGEE Stellar Parameters

DR10, S/N in DR10 > 100.0, No. of Stars = 31963

Download DR14 data from: <u>https://www.sdss.org/dr14/irspec/</u> See Holtzman et al. (2018) and Jönsson et al. (2018)