#### How planets affect cool stars

#### Katja Poppenhaeger

Queen's University Belfast → University of Potsdam / Leibniz Institute for Astrophysics AIP











## tidal interaction



## tidal interaction

stellar spin

## magnetic interaction



## magnetic interaction



stellar flares, hot spots

#### planetary effects driven by star

#### atmospheric blow-off

## tidal interaction

stellar spin

#### **Tidal interaction**



Mathis & Remus (2013)

see also Lanza & Mathis (2016)

#### Tidal interaction: inspiralling planets



#### How stars age on the main sequence



loss of angular momentum through stellar wind ("magnetic braking")





Miller et al. (2014)

DIFFICULTY:

small & large planets "easy" to detect

#### **DIFFICULTY:**

only Hot Jupiters "easy" to detect

small & large planets "easy" to detect



#### How stars age on the main sequence



loss of angular momentum through stellar wind ("magnetic braking")

Star overactive / over-rotating: planetary influence or just younger star?

#### Some over-spinning stars

Hot Jupiter hosts:

```
WASP-19, G8V star

P_{rot} = 10.5 d

age = ~5 Gyr (isochrones)

Hebb et al. (2010)
```

```
HATS-18, mid-G star

P_{rot} = 9.8 d

age = ~5 Gyr (isochrones)

Penev et al. (2016)
```

See also Maxted et al. (2015) for discrepancies in gyro- and isochrone ages



Mugrauer et al. (2007); see also Raghavan (2006)



HD 189733 Ab B



upsilon And Ab B



HD 46375 Ab B



CoRoT-2 Ab B



tau Boo Ab B



HD 178911 A Bb



55 Cnc Abcde B



HAT-P-20 Ab B



HD 109749 Ab B

Poppenhaeger et al. (2014), Poppenhaeger et al. in prep.

strong tidal interaction



weak tidal interaction



٠











more active





more active

#### Several over-active systems



#### Tidal spin-up of host stars

Need to be careful with selecting samples: detectability of exoplanets related to stellar activity

Compare stellar activity to reasonable expectation: through stellar ages or stellar companions

## magnetic interaction



stellar flares, hot spots

# Strong magnetic fields for very hot exoplanets



Simulations:

strongly irradiated Hot Jupiters can have strong magnetic fields powered through enhanced dynamo processes

Rogers & McElwaine (2017) Yadav & Thorngren (2017)

# Strong magnetic fields for very hot exoplanets

![](_page_35_Figure_1.jpeg)

Simulations:

strongly irradiated Hot Jupiters can have strong magnetic fields powered through enhanced dynamo processes

Rogers & McElwaine (2017) Yadav & Thorngren (2017)

#### Planet-induced hot spots?

![](_page_36_Figure_1.jpeg)

#### But also: absence of magnetic effects

![](_page_37_Picture_1.jpeg)

WASP-18 (1.2 M<sub>Sun</sub>): completely X-ray dark!

Miller et al. (2012), Pillitteri et al. (2014)

![](_page_37_Figure_4.jpeg)

#### Planetary / coronal rain

![](_page_38_Figure_1.jpeg)

Pillitteri et al. (2015)

## Planetary / coronal rain

### (e: rocky planet)

![](_page_39_Figure_2.jpeg)

First indications: FUV line absorption in red wings of lines, not in blue wings

> planet-triggered coronal rain?

other works: Lanza (2013) Scandariato et al. (2013) Strugarek et al. (2014), Matsakos et al. (2015)

2 stars:

![](_page_40_Figure_2.jpeg)

magnetospheres: Getman et al. (2011); but: Getman et al. (2016)

![](_page_41_Figure_1.jpeg)

![](_page_42_Figure_1.jpeg)

Maggio et al. (2015)

![](_page_43_Figure_1.jpeg)

This should depend on the planet's magnetosphere!

#### planetary effects

#### atmospheric blow-off

### Atmospheres and high-energy photons

![](_page_45_Figure_1.jpeg)

image credit: NASA

#### Extended atmospheres in UV/X-ray

![](_page_46_Figure_1.jpeg)

#### X-ray transits: extended atmospheres

![](_page_47_Figure_1.jpeg)

HD 189733 b

Poppenhaeger et al. (2013)

#### Atmospheric evaporation

driven by X-ray and extreme UV photons e.g. Murray-Clay et al. (2009), Lecavelier des Etangs (2004)

total estimated mass loss: small for Jupiters (few %), but substantial for small (Neptune-like) exoplanets

![](_page_48_Figure_3.jpeg)

#### Survival of exoplanet atmospheres

Erosion by high-energy irradiation: time-limited because cool stars spin down. Strong spin-down/X-ray dimming at old ages:

![](_page_49_Figure_2.jpeg)

Booth, Poppenhaeger et al. (2017)

#### Survival of exoplanet atmospheres

If stellar high-energy output altered by Hot Jupiters: changes atmosphere survival time for all planets in system!

![](_page_50_Figure_2.jpeg)

Booth, Poppenhaeger et al. (2017)

## tidal interaction

measurable when stellar age (proxy) available

## magnetic interaction

needs good orbital phase coverage for statistics

stellar flares, hot spots

planetary effects

seems common in short-period systems; potential feedback effects atmospheric blow-off

### I'm hiring!

![](_page_54_Figure_1.jpeg)

©EnchantedLearning.com