Irradiance Coronal Dimming and its **Connection to CME Kinematics**

James Paul Mason @starfleetjames NASA/GSFC NPP Fellow

2018-08-02

Barbara Thompson Allison Youngblood

Background Why coronal dimming and what is it?

Problem statement

- dimming and CME kinematics
- and estimate stellar CME speed & mass¹

Establish connections between irradiance coronal

Then we can create new space weather instruments,

¹Harra et al., Sol. Phys., 291:1761 (2016)

What dimming looks like: images

- μ lifetime = 8 hours
- Rarely > 24 hours

CME

"Transient coronal holes"

After

Stats from Reinard & Biesecker, ApJ, 674:576 (2008); figure from Mason et al., ApJ, 789:61 (2014); movie courtesy of Barbara Thompson

@starfleetjames

background - catalog - status

SDO/AIA multi-channel persistence 10 hours

What dimming looks like: spectra

- Dimming in lines that trace ambient corona (~1 MK in Sun)
- Flare peak interferes, but can be removed

9:	61	(20	14)
	<u> </u>		_
			-
-	_		
-	_		Ţ
-	_		Ţ
← -	~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
_	_		
1000			
-	- 1		_
			mauri I
The second			
	~		-
			4 -10
			-
	Ana	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-
			-

Dimming profile ↔ CME kinematics

30 events study to derive empirical relationship

$v_{CME}\left[\frac{km}{s}\right] \approx 2.36$

 $m_{CME}[g] \approx 2.59 \times$

Fast CMEs dim fast

Massive CMEs dim a lot

$$\times 10^{6} \left[\frac{km}{\%}\right] \times s_{dim} \left[\frac{\%}{s}\right]$$
$$\times 10^{15} \left[\frac{g}{\%}\right] \times \sqrt{d_{dim}} [\%]$$

Mason et al., ApJ, 789:61 (2014)

MHD simulations of dimming for confirmation of empirically derived relationships to CMEs

@starfleetjames

Making a big irradiance dimming catalog For more statistics

The input: SDO/EVE lines

- Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE)
- Search the 39 extracted emission lines for dimming

60 - 1060 Å, 1 Å resolution, ~0.25% precision, ~30% accuracy, no spatial resolution

background - catalog - status

The output: <u>James's EVE Dimming I</u>ndex (JEDI) catalog

- **csv file (125 MB):**
 - 5052 rows (potential events)
 - 24303 columns
 (parameters, e.g., depth, slope, duration per λ permutation)
- Millions of plots (12 GB)

JEDI current status Released v1.0.1: A New Hope

github.com/jmason86/James-s-EVE-Dimming-Index-JEDI

Working on v2: Error Strikes Back

Ongoing work

- Comparing JEDI to CME catalogs (CDAW, CACTus)
- And image-based dimming catalogs (DEMON, CoDiT)
- Apply machine learning, develop robust dimming/CME relationship, validation of catalog (e.g., spot checking like these images)
- Working on Star Dimming Observability Calculator (StarDOC¹)

¹Part of Jake Wilson's (high school student) summer internship at NASA, images from Mason et al., ApJ 789:61 (2014)

background - catalog - status

Stellar dimming?

Parke Loyd searching Hubble data

- effective area too small)
- predict what we might expect to see

Allison Youngblood searched EUVE data (nothing found,

Meng Jin running MHD simulations for other stars to

-friendly summary

1. Solar dimming is measurable in images but also in ultraviolet irradiance (sun-as-a-star measurements)

- coronal mass ejections (CMEs)
- stellar CMEs

2. Dimming contains kinematic information about

3. Measure dimming on other stars \rightarrow detect/characterize