Detection of a Millimeter Flare from Proxima Centauri

Meredith A. MacGregor NSF Postdoctoral Fellow Carnegie Department of Terrestrial Magnetism

Alycia Weinberger, David Wilner, Adam Kowalski, Steve Cranmer

Cool Stars 20 August 2, 2018

The Proxima Centauri System

The Star

spectral type = M5.5V distance = 1.3 pc

The Planet $m_p \sin i = 1.3 M_{\oplus}$ a = 0.05 AU

(Anglada-Escudé et al. 2016)

Dust Rings?

(1) warm dust at ~0.4 AU
(2) a cold belt from 1– 4 AU
(3) an outer belt at ~30 AU
(Anglada et al. 2017)

12-m Array: 2x on 2017 April 25

ACA: 13x on 2017 January 21 – March 24

ALMA project: 2016.A.00013.S (PI Anglada)

The ALMA Array

Observation or 'SB' = ~1.5 hours in total length

6.5 min on-source integration alternating with a phase calibrator Main Array 50 x 12-m antennas

Atacama Compact Array (ACA) 12 x 7-m antennas

All observations taken at 1.3 mm (230 GHz, Band 6) with 8 GHz of bandwidth and two linear polarizations (XX, YY)

ALMA 12-m Observations

For reference: expected photospheric flux = $74 \pm 4 \mu$ Jy (Ribas et al. 2017)

ALMA 12-m Observations

Flux fairly consistent between two observations

Range from $50 - 157 \mu$ Jy Slightly above photospheric flux

Spectral index consistent with Rayleigh-Jeans $\alpha = 2.58 \pm 2.05$

No detected linear polarization $|Q/l| = 0.09 \pm 0.12$

MacGregor et al. (2018)

For reference: expected photospheric flux = $74 \pm 4 \mu$ Jy (Ribas et al. 2017)

A Comparison – AU Mic

ALMA 1.3 mm

ALMA observations show central peak above photosphere and VLA observations show significant variable emission from stellar activity

MacGregor

Emission at X-ray through radio wavelengths explained by coronal heating from continual small flares (Cranmer, Wilner & MacGregor 2013)

VLA Observations

ALMA Observations

MacGregor et al. (2013)

ACA Observations

For reference: expected photospheric flux = $74 \pm 4 \mu$ Jy (Ribas et al. 2017)

Detection of a Millimeter Flare

Proxima Centauri underwent a significant flaring event during the ACA observations

MacGregor

Millimeter Flare Properties

1000× brighter than quiescent emission $F = 100 \pm 4 \text{ mJy}$ $L = 2.04 \pm 0.15 \times 10^{14} \text{ erg s}^{-1} \text{ Hz}^{-1}$

Falling spectral index with frequency $\alpha = -1.77 \pm 0.45$

Positive fractional linear polarization $|Q/l| = 0.19 \pm 0.02$

10x brighter at peak than brightest solar flares at millimeter wavelengths $L = 2 \times 10^{13} \text{ erg s}^{-1} \text{ Hz}^{-1} \quad \alpha = 0.3 - 5$

Implications for Dust

Anglada et al. (2017)

Need to better understand millimeter stellar emission in order to characterize emission from unresolved (warm) dust belts!

The Outer Belt

Current observations cannot prove or rule out the presence of an outer belt

BUT

There are some significant caveats:

MacGregor et al. (2018); Anglada et al. (2017)

Background Galaxies

From ALMA source counts (Carniani et al. 2015), expect 13 (+10, -8) background sources in image

Galactic Plane

Region of high background cirrus, which confused Spitzer observations at 60 µm (Gautier et al. 2007)

AU Mic (Again)

Hard to determine emission mechanism with only one event

Now, there's a 2nd millimeter flare detected by ALMA from AU Mic

10x brighter than Proxima flare! $F = 16.8 \pm 0.3 \text{ mJy}$ $L = 1.96 \pm 0.04 \times 10^{15} \text{ erg s}^{-1} \text{ Hz}^{-1}$

Again, falling spectral index $\alpha = -1.30 \pm 0.07$

***Analysis done by summer student Samantha O'Sullivan (Harvard undergrad)

Data from ALMA project: 2015.1.00866.S (PI Hughes)

Take-Aways

(1) Detected a stellar flare at millimeter wavelengths from Proxima Centauri with ALMA (and now another from AU Mic)

(2) No indication of dust emission interior to 4 AU

- (3) Opens a new observational window on the mechanisms responsible for stellar flaring
- (4) Caution needed when interpreting unresolved excess emission as dust
- (5) Need additional observations at millimeter and complementary wavelengths to learn more

Future work: monitoring with ALMA during Cycle 6 for 40 hours (2018.1.00470.S, PI MacGregor) with simultaneous optical observations