JACOB LUHN

NSF Graduate Research Fellow Penn State University

New Astrophysical Insights Into Radial Velocity Jitter

THE RADIAL VELOCITY (RV) METHOD

RVS IN THE TRANSIT ERA

Radial velocities are crucial for transit follow-up:

- planet confirmation/rejection
- mass from RVs + radius from transit = planet densities

Between survey programs and follow-up, RV facilities can't keep up!

RADIAL VELOCITY JITTER

In short, RV "noise" induced by stellar variability

My exoplanet perspective is showing...

Magnetically driven

star spots

flares

Convection driven

granulation

oscillations

MORE ACTIVE STARS HAVE HIGHER RV JITTER

Saar et al. (1998)
Santos et al. (2000)
Wright (2005)
Isaacson & Fischer (2010)
...among others

Wright (2005)

MORE EVOLVED STARS HAVE HIGHER RV JITTER

Activity-dominated

Active stars pile up toward high logg (~ZAMS)

Convection-dominated

Inactive stars increase with evolution

RV JITTER TRACKS STELLAR EVOLUTION

1. Star is born, active and jittery

2. Spins down, decrease in activity/jitter

3. Falls to "jitter minimum"

4. Gradual increase from convection

RV jitter tracks stellar evolution!

We can use this sample as a tool to predict amplitude and dominant component of RV jitter.

Precise radial velocities provide another means of studying stellar evolution.