Recent developments on the formation and evolution of young low-mass stars

Rob Jeffries Keele University, UK

Observations of young clusters that probe:

- The influence of magnetic activity and rotation on early evolution
- The ages of young (low-mass) stars
- Precision dynamics in young clusters
- Early Gaia DR2 results

With acknowledgements to Richard Jackson, Nick Wright, the Gaia-ESO collaboration and funding from STFC and NASA
Improvements in stellar evolutionary models at young ages
Better match to observed colour-magnitude diagrams
CMD: Still BIG problems for K & M stars at the ZAMS

Gaia DR2 + RV selection – Jeffries et al. in prep
HR diagram: Ages of hotter stars older than those of cooler stars?

Fang, Herczeg & Rizutto 2017, AJ, 842, 123
Problems with stellar evolution models

Radius

Magnetic Inflation?

Mass

Birkby et al. 2012, MN, 426, 1507
More problems: Fundamental Parameters
Low-mass PMS eclipsing binaries appear colder than predicted by the models (i.e. larger at the same mass and luminosity)

Binary in Upper Sco

Binary in Praesepe
More problems: Lithium depletion

A spread of lithium depletion is apparent in young clusters
Fast rotation is correlated with less Li depletion

Confirmed in other clusters (with larger numbers)
K2 rotation periods + WIYN spectroscopy of M35 (age ~ 150 Myr)

Jeffries et al. 2018 in prep.

Delta EW w.r.t median trend
1.7 < (V-K)_0 < 2.5

SLOW rotators deplete more Li
The “spreading” has already begun (with a smaller dispersion) at 5Myr in NGC 2264

EW Li from the Gaia-ESO survey
COROT periods from

Slow rotators

Fast rotators

SLOW rotators deplete more Li
Magnetic fields/starspots can cause “inflation” of an active (young) star.

Inhibition of convection

Feiden & Chaboyer 2013, 2014
Feiden 2016
Macdonald & Mullan 2014, 2015, 2017

Starspots

Somers & Pinsonneault 2014, 2015
Jackson & Jeffries 2014

Slows down PMS evolution.
Radii are larger, cores are cooler for a given mass/age.
Rotation dependent inflation/spot coverage can explain Li dispersion

Spots block 30% of flux and inflate stars by ~10%

Eclipsing binary in Upper Sco – problem solved?

Surface magnetic flux is clearly correlated with rotation, but saturates at 2-3kG below a Rossby number of 0.1.

Magnetic flux measurements via Zeeman effect:
Saar 1996, 2001;
Reiners & Basri 2007; Reiners+ 2009
Direct evidence for magnetic fields and spots

Spots block **10-40% of flux** from the most active stars. Rough correlation with Rossby Number and poor correlation with modulation amplitude suggests variable spot coverage with high levels of axial symmetry.

Spot coverage from LAMOST
Fang+ 2016, 2018

Rotation periods/amplitudes from K2
Rebull+ 2016; Douglas+ 2016, 2017
Direct evidence for radius inflation \[R \sin i = 0.02 \, P \times \nu \sin i \]

Rotation velocities from WIYN/Hydra
Rotation periods from K2;

Models:
Feiden+ 2015 csss...18..171F
Somers+ 2015 ApJ...807..174S

14 ±2 % Inflation

Inhibition of convection
Flux blocking by starspots β=0.16

Jackson+ 2018, MN, 476, 3245
See also Jackson+ 2016; Lanzafame+ 2017; Kesseli+ 2018
SED fitting in young clusters

Radii are ~10% larger than Model predictions

Morrell, Barnes & Naylor in prep – see poster #213
The Gaia-ESO Survey of the Gamma Vel Cluster
Examine the CMD and the Li depletion pattern

A 10% “inflated” isochrone between 18 and 21 Myr matches the data in both diagrams

Similar results for:
Consequences

PMS stars may be:

OLDER and **MORE MASSIVE** than you thought.

Cluster formation and disc dispersal lifetimes are proportional to these ages!

Ages and formation of young stellar clusters

HR diagram implies large age spread

- 1. Extinction
- 2. Accretion
- 3. Variability
- 4. Binarity

All contribute to the scatter

Hartmann 2001, AJ, 121, 1030
Resolving Cluster Age Distributions

Multiple sequences in the ONC

Intracluster age gradients ~ 1 Myr/pc with SFiNCs/MYSTIX

Getman+ 2018, MN, 476, 1213

Multiple sequences in the ONC
Resolving cluster dynamics

$$\sigma_{1D} \sim 0.7 \left(\frac{M}{10^3 M_\odot} \right)^{\frac{1}{2}} \left(\frac{R}{1 \text{pc}} \right)^{-\frac{1}{2}} \text{km/s}$$

Cha I: 2 Myr cluster - structure/gradient in RV
Core dispersion < stellar dispersion

ρ Ophiuchus: 1 Myr - Partly embedded in parental gas

Stellar dispersion 1.14 ± 0.35 km/s

Gas/Core dispersion 0.4 km/s

GES RVs

13CO

Gaia DR2

$\Delta V_T = 0.05 \left(\frac{\text{km/s}}{0.1 \text{mas/yr}} \right) \left(\frac{d}{100 \text{pc}} \right) \text{km/s}$

$\Delta d \approx 1 \left(\frac{\Delta \pi}{0.1 \text{mas}} \right) \left(\frac{d}{100 \text{pc}} \right)^2 \text{pc}$

Unprecedented numbers and precision to study

- Cluster distances
- Cluster membership
- Cluster dynamics

$2D > 4D > 5D > 6D > 7D$

Positions + PMs + Parallaxes + RVs + Ages

Adapted from Melis+ 2014, Science, 345, 1029
Gaia DR2 2D Cluster kinematics – pm vector diagrams

Evidence for expansion in some, but not all, young clusters

Some non-expanding clusters may be bound – e.g. the ONC, NGC2362. Rapidly expanding clusters appear unbound – e.g. λ Ori, NGC 6530.
Little evidence that larger clusters form by merger at later times

Kinematic substructure and lack of coherent expansion in OB associations suggest they formed in a highly substructured manner – talks by Wright, Kounkel on Monday
The Gamma Vel Cluster

Gaia-ESO survey – RV precision 0.25 km/s

Single RV component
- poor fit

Two-component fit

$\sigma_A = 0.34 \text{ km/s (virial eqm.)} \quad \text{“Group A”}$

$\sigma_B = 1.60 \text{ km/s (unbound)} \quad \text{“Group B”}$

$\Delta R V = 2 \text{ km/s}$

Gaia DR2 + RVs

Franciosini et al. 2018 arXiv 1807.0362

- Cluster(s) resolved in 7D
- A is closer than B
- B is expanding and moving away from A
- A and B are almost coeval
- A is bound, B is unbound
Recent developments on the formation and evolution of young low-mass stars

Summary

- Evidence that low-mass evolutionary models fail for PMS stars
- Magnetic activity/spots may inflate stars leading them to be older and colder than you thought
- Young clusters may have age gradients (multiple populations?), but any merging happens early-on
- Gaia will revolutionise this field – but maximum leverage comes with combined spectroscopy