Exploring the Role of a Tachocline in M-Dwarf Magnetism

Connor Bice

In association with: Benjamin Brown, Nicholas Featherstone, Bradley Hindman, and Juri Toomre

University of Colorado at Boulder
Why M-Dwarfs?

- Strong candidates in exoplanet searches
- Flare stars
- Rotation - Activity relation
- Spectral type - Activity relation?

Feigelson et al. 2003
after Wright et al. 2011
The Tachocline Divide

- >10% active earlier than M3
- ~90% active later than M6
- Current activity may reflect different spin-down histories
- Fully convective below M3.5
The Solar Tachocline

- Helioseismology reveals a shear layer separating RZ and CZ in the Sun
- Can store and amplify wreathy fields generated in the bulk of the CZ

Brown et al. 2010
Computing Setup - Rayleigh

- Open source code developed by Nick Featherstone with NSF support through the Computational Infrastructure for Geodynamics (CIG)
- Anelastic MHD in rotating spherical shells
- Pseudospectral
 - Chebyshev polynomials
 - Spherical harmonics
- Background states taken from MESA
 - 0.4 M_\odot rotating at 2 Ω_\odot
 - Include / exclude stable layer below CZ
- Simulations here use 4096 cores on Pleiades
 - Efficient scaling to $O(10^5)$
Toroidal Field Structure - No Stable Layer

- Helical generation
- Quenched Diff. Rotation
Toroidal Field Structure - Stable Layer

- Secondary site
- Powered by mean shear
Time Variability

- Poleward migration of B_ϕ
- Pure convection has reversals every 100-200 rotations
- Model with sub-adiabatic layer has cycle period $T \sim 220$ rotations
Emergent Field

- Dipole much weaker in tachocline model
- Low latitude field builds up in downflow lanes
Conclusions

1. Deep convecting shells can organize very strong mean toroidal fields without need for a stable layer
2. Tachoclines provide even very deep shells an additional site for toroidal field generation with a longer cycling period
3. Early m-dwarfs might actually just “be bad” at building **poloidal** fields -- more simulations are needed.
Computing Setup - Modeling

- MESA reference states
- Fixed entropy gradient boundaries
- Diffuse internal heating
- ~1300x super-critical

<table>
<thead>
<tr>
<th>Case</th>
<th>(N_r, N_\theta, N_\phi)</th>
<th>(N_\rho)</th>
<th>(\Omega_0/\Omega_\odot)</th>
<th>(\nu , cm^2 s^{-1})</th>
<th>(Pr)</th>
<th>(Prm)</th>
<th>(Raf)</th>
<th>(Ta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2NT</td>
<td>196\times512\times1024</td>
<td>5</td>
<td>2</td>
<td>(1.02 \times 10^{11})</td>
<td>0.25</td>
<td>-</td>
<td>1.86 \times 10^{10}</td>
<td>4.19 \times 10^{8}</td>
</tr>
<tr>
<td>H2T</td>
<td>(196+48)\times512\times1024</td>
<td>5</td>
<td>2</td>
<td>(1.02 \times 10^{11})</td>
<td>0.25</td>
<td>-</td>
<td>1.87 \times 10^{10}</td>
<td>4.21 \times 10^{8}</td>
</tr>
<tr>
<td>D2NT</td>
<td>196\times512\times1024</td>
<td>5</td>
<td>2</td>
<td>(1.02 \times 10^{11})</td>
<td>0.25</td>
<td>4</td>
<td>1.86 \times 10^{10}</td>
<td>4.19 \times 10^{8}</td>
</tr>
<tr>
<td>D2NTa</td>
<td>196\times512\times1024</td>
<td>5</td>
<td>2</td>
<td>(1.02 \times 10^{11})</td>
<td>0.25</td>
<td>15</td>
<td>1.86 \times 10^{10}</td>
<td>4.19 \times 10^{8}</td>
</tr>
<tr>
<td>D2T</td>
<td>(196+48)\times512\times1024</td>
<td>5</td>
<td>2</td>
<td>(1.02 \times 10^{11})</td>
<td>0.25</td>
<td>4</td>
<td>1.87 \times 10^{10}</td>
<td>4.21 \times 10^{8}</td>
</tr>
<tr>
<td>D2Ta</td>
<td>(195+48)\times512\times1024</td>
<td>5</td>
<td>2</td>
<td>(1.02 \times 10^{11})</td>
<td>0.25</td>
<td>15</td>
<td>1.87 \times 10^{10}</td>
<td>4.21 \times 10^{8}</td>
</tr>
</tbody>
</table>

Values quoted at 0.7R.